3.1.52 \(\int \frac {x^2 \sqrt {a+c x^2}}{d+e x+f x^2} \, dx\)

Optimal. Leaf size=452 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (a f^2+2 c \left (e^2-d f\right )\right )}{2 \sqrt {c} f^3}-\frac {\left (e \left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (e \left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {a+c x^2} (2 e-f x)}{2 f^2} \]

________________________________________________________________________________________

Rubi [A]  time = 1.97, antiderivative size = 452, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1069, 1080, 217, 206, 1034, 725} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (a f^2+2 c \left (e^2-d f\right )\right )}{2 \sqrt {c} f^3}-\frac {\left (e \left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (e \left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {a+c x^2} (2 e-f x)}{2 f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[a + c*x^2])/(d + e*x + f*x^2),x]

[Out]

-((2*e - f*x)*Sqrt[a + c*x^2])/(2*f^2) + ((a*f^2 + 2*c*(e^2 - d*f))*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(2*S
qrt[c]*f^3) - ((e*(e - Sqrt[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - 2*d*f)) - 2*d*f*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[(
2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c
*x^2])])/(Sqrt[2]*f^3*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + ((e*(e + Sqrt
[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - 2*d*f)) - 2*d*f*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4
*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*f^3*Sqrt[
e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1069

Int[((a_) + (c_.)*(x_)^2)^(p_)*((A_.) + (C_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Si
mp[((C*(-(c*e*(2*p + q + 2))) + 2*c*C*f*(p + q + 1)*x)*(a + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*c*f^2*(p +
q + 1)*(2*p + 2*q + 3)), x] - Dist[1/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)), Int[(a + c*x^2)^(p - 1)*(d + e*x +
 f*x^2)^q*Simp[p*(-(a*e))*(C*(c*e)*(q + 1) - c*(C*e)*(2*p + 2*q + 3)) + (p + q + 1)*(a*c*(C*(2*d*f - e^2*(2*p
+ q + 2)) + f*(-2*A*f)*(2*p + 2*q + 3))) + (2*p*(c*d - a*f)*(C*(c*e)*(q + 1) - c*(C*e)*(2*p + 2*q + 3)) + (p +
 q + 1)*(C*e*f*p*(-4*a*c)))*x + (p*(c*e)*(C*(c*e)*(q + 1) - c*(C*e)*(2*p + 2*q + 3)) + (p + q + 1)*(C*f^2*p*(-
4*a*c) - c^2*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x] /; FreeQ[{a
, c, d, e, f, A, C, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2*p + 2*q + 3, 0] &
&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1080

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)
*Sqrt[d + f*x^2]), x], x] /; FreeQ[{a, b, c, d, f, A, B, C}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x^2 \sqrt {a+c x^2}}{d+e x+f x^2} \, dx &=-\frac {(2 e-f x) \sqrt {a+c x^2}}{2 f^2}-\frac {\int \frac {a c d f-c e (2 c d-a f) x-c \left (a f^2+2 c \left (e^2-d f\right )\right ) x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 c f^2}\\ &=-\frac {(2 e-f x) \sqrt {a+c x^2}}{2 f^2}-\frac {\int \frac {a c d f^2+c d \left (a f^2+2 c \left (e^2-d f\right )\right )+\left (-c e f (2 c d-a f)+c e \left (a f^2+2 c \left (e^2-d f\right )\right )\right ) x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 c f^3}+\frac {\left (a f^2+2 c \left (e^2-d f\right )\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{2 f^3}\\ &=-\frac {(2 e-f x) \sqrt {a+c x^2}}{2 f^2}+\frac {\left (a f^2+2 c \left (e^2-d f\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{2 f^3}+\frac {\left (e \left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{f^3 \sqrt {e^2-4 d f}}-\frac {\left (e \left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{f^3 \sqrt {e^2-4 d f}}\\ &=-\frac {(2 e-f x) \sqrt {a+c x^2}}{2 f^2}+\frac {\left (a f^2+2 c \left (e^2-d f\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 \sqrt {c} f^3}-\frac {\left (e \left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{f^3 \sqrt {e^2-4 d f}}+\frac {\left (e \left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{f^3 \sqrt {e^2-4 d f}}\\ &=-\frac {(2 e-f x) \sqrt {a+c x^2}}{2 f^2}+\frac {\left (a f^2+2 c \left (e^2-d f\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 \sqrt {c} f^3}-\frac {\left (e \left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\left (e \left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-2 d f\right )\right )-2 d f \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.50, size = 516, normalized size = 1.14 \begin {gather*} \frac {\frac {2 f \left (\frac {a^{3/2} \sqrt {\frac {c x^2}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{\sqrt {c}}+a x+c x^3\right )}{\sqrt {a+c x^2}}+\frac {\left (\frac {2 d f-e^2}{\sqrt {e^2-4 d f}}+e\right ) \left (\sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )} \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )-\sqrt {c} \left (\sqrt {e^2-4 d f}-e\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )\right )}{f}+\frac {\left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \left (\sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )+\sqrt {c} \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )\right )}{f \sqrt {e^2-4 d f}}-2 \sqrt {a+c x^2} \left (\frac {e^2-2 d f}{\sqrt {e^2-4 d f}}+e\right )-2 \sqrt {a+c x^2} \left (\frac {2 d f-e^2}{\sqrt {e^2-4 d f}}+e\right )}{4 f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[a + c*x^2])/(d + e*x + f*x^2),x]

[Out]

(-2*(e + (e^2 - 2*d*f)/Sqrt[e^2 - 4*d*f])*Sqrt[a + c*x^2] - 2*(e + (-e^2 + 2*d*f)/Sqrt[e^2 - 4*d*f])*Sqrt[a +
c*x^2] + (2*f*(a*x + c*x^3 + (a^(3/2)*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]])/Sqrt[c]))/Sqrt[a + c*x
^2] + ((e + (-e^2 + 2*d*f)/Sqrt[e^2 - 4*d*f])*(-(Sqrt[c]*(-e + Sqrt[e^2 - 4*d*f])*ArcTanh[(Sqrt[c]*x)/Sqrt[a +
 c*x^2]]) + Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f
])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]))/f + ((e^2 - 2*d*f + e*Sqrt
[e^2 - 4*d*f])*(Sqrt[c]*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] + Sqrt[4*a*f^2 + 2*c*(e^2
 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*
f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]))/(f*Sqrt[e^2 - 4*d*f]))/(4*f^2)

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.67, size = 496, normalized size = 1.10 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {2 \text {$\#$1}^2 c d e f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+\text {$\#$1}^2 (-c) e^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 a e f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a^2 e f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} c^{3/2} d^2 f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} c^{3/2} d e^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-2 a c d e f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} a \sqrt {c} d f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a c e^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ]}{f^3}+\frac {\log \left (\sqrt {a+c x^2}-\sqrt {c} x\right ) \left (-a f^2+2 c d f-2 c e^2\right )}{2 \sqrt {c} f^3}+\frac {\sqrt {a+c x^2} (f x-2 e)}{2 f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^2*Sqrt[a + c*x^2])/(d + e*x + f*x^2),x]

[Out]

((-2*e + f*x)*Sqrt[a + c*x^2])/(2*f^2) + ((-2*c*e^2 + 2*c*d*f - a*f^2)*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/(2
*Sqrt[c]*f^3) + RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*
c*e^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - 2*a*c*d*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + a^2*e*
f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*c^(3/2)*d*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 2
*c^(3/2)*d^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x
^2] - #1]*#1 - c*e^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 + 2*c*d*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x
^2] - #1]*#1^2 - a*e*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3
*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ]/f^3

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.04, size = 7739, normalized size = 17.12 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2\,\sqrt {c\,x^2+a}}{f\,x^2+e\,x+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + c*x^2)^(1/2))/(d + e*x + f*x^2),x)

[Out]

int((x^2*(a + c*x^2)^(1/2))/(d + e*x + f*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \sqrt {a + c x^{2}}}{d + e x + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**2+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x**2*sqrt(a + c*x**2)/(d + e*x + f*x**2), x)

________________________________________________________________________________________